Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.709
Filtrar
1.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664378

RESUMO

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Assuntos
Colo , Fibras na Dieta , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superfície Celular , Animais , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Camundongos , Colo/metabolismo , Colo/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Feminino , Camundongos Endogâmicos C57BL , Muco/metabolismo , Transplante de Microbiota Fecal , Simbiose , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
2.
Environ Toxicol Chem ; 43(5): 1126-1137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483077

RESUMO

Evaluating biomarkers of stress in amphibians is critical to conservation, yet current techniques are often destructive and/or time-consuming, which limits ease of use. In the present study, we validate the use of dermal swabs in spotted salamanders (Ambystoma maculatum) for biochemical profiling, as well as glutathione (GSH) stress response following pesticide exposure. Thirty-three purchased spotted salamanders were acclimated to laboratory conditions at Washington College (Chestertown, MD, USA) for 4 weeks. Following acclimation, salamanders were randomly sorted into three groups for an 8-h pesticide exposure on soil: control with no pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D), or chlorpyrifos. Before and after exposure, mucus samples were obtained by gently rubbing a polyester-tipped swab 50 times across the ventral and dorsal surfaces. Salamanders were humanely euthanized and dissected to remove the brain for acetylcholinesterase and liver for GSH and hepatic metabolome analyses, and a whole-body tissue homogenate was used for pesticide quantification. Levels of GSH were present in lower quantities on dermal swabs relative to liver tissues for chlorpyrifos, 2,4-D, and control treatments. However, 2,4-D exposures demonstrated a large effect size increase for GSH levels in livers (Cohen's d = 0.925, p = 0.036). Other GSH increases were statistically insignificant, and effect sizes were characterized as small for 2,4-D mucosal swabs (d = 0.36), medium for chlorpyrifos mucosal swabs (d = 0.713), and negligible for chlorpyrifos liver levels (d = 0.012). The metabolomics analyses indicated that the urea cycle, alanine, and glutamate metabolism biological pathways were perturbed by both sets of pesticide exposures. Obtaining mucus samples through dermal swabbing in amphibians is a viable technique for evaluating health in these imperiled taxa. Environ Toxicol Chem 2024;43:1126-1137. © 2024 SETAC.


Assuntos
Glutationa , Metabolômica , Animais , Glutationa/metabolismo , Muco/metabolismo , Clorpirifos/análise , Praguicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético , Pele/metabolismo , Pele/química , Pele/efeitos dos fármacos , Ambystoma/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise
3.
Int J Biol Macromol ; 265(Pt 2): 130839, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490391

RESUMO

Mucus penetration is one of the physiologic barriers of inhalation and nanocarriers can effectively facilitate the permeation of drugs. The interactions between the nanocarriers and mucin are crucial for penetration across the mucus layer on the respiratory tract. In this study, we proposed a molecular dynamics (MD) simulation method for the screening of polysaccharides that acted as the surface modification materials for inhalable nano-preparations to facilitate mucus penetration. MD revealed all-atom interactions between the monomers of polysaccharides, including dextran (DEX)/hyaluronic acid (HA)/carboxymethyl chitosan (CMCS) and the human mucin protein MUC5AC (hMUC5AC). The obtained data showed that DEX formed stronger non-covalent bonds with hMUC5AC compared to HA and CMCS, which suggested that HA and CMCS had better mucus permeability than DEX. For the in vitro verification, HA/CMCS-coated liposomes and DEX/PEG-inserted liposomes were prepared. The results of mucin interactions and mucus penetration studies confirmed that HA and CMCS possessed the weakest interactions with mucin and facilitated the mucus penetration, which was in consistent with the data from MD simulation. This work may shed light on the MD simulation-based screening of surface modification materials for inhalable nano-preparations to facilitate mucus penetration.


Assuntos
Lipossomos , Simulação de Dinâmica Molecular , Humanos , Lipossomos/química , Mucinas/metabolismo , Muco/metabolismo , Pulmão
4.
J Agric Food Chem ; 72(13): 7033-7042, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507725

RESUMO

Asthma is recognized as a chronic respiratory illness characterized by airway inflammation and airway hyperresponsiveness. Wogonoside, a flavonoid glycoside, is reported to significantly alleviate the inflammation response and oxidative stress. Herein, this study aimed to investigate the therapeutic effect and underlying mechanism of wogonoside on airway inflammation and mucus hypersecretion in a murine asthma model and in human bronchial epithelial cells (16HBE). BALB/c mice were sensitized and challenged with ovalbumin (OVA). Pulmonary function and the number of cells in the bronchoalveolar lavage fluid (BALF) were examined. Pathological changes in lung tissue in each group were evaluated via hematoxylin and eosin and periodic acid-Schiff staining, and changes in levels of cytokines in BALF and of immunoglobulin E in serum were determined via an enzyme-linked immunosorbent assay. The expression of relevant genes in lung tissue was analyzed via real-time PCR. Western blotting and immunofluorescence were employed to detect the expression of relevant proteins in lung tissue and 16HBE cells. Treatment with 10 and 20 mg/kg wogonoside significantly attenuated the OVA-induced increase of inflammatory cell infiltration, mucus secretion, and goblet cell percentage and improved pulmonary function. Wogonoside treatment reduced the level of T-helper 2 cytokines including interleukin (IL)-4, IL-5, and IL-13 in BALF and of IgE in serum and decreased the mRNA levels of cytokines (IL-4, IL-5, IL-6, IL-13, and IL-1ß and tumor necrosis factor-α), chemokines (CCL-2, CCL-11, and CCL-24), and mucoproteins (MUC5AC, MUC5B, and GOB5) in lung tissues. The expression of MUC5AC and the phosphorylation of STAT6 and NF-κB p65 in lung tissues and 16HBE cells were significantly downregulated after wogonoside treatment. Thus, wogonoside treatment may effectively decrease airway inflammation, airway remodeling, and mucus hypersecretion via blocking NF-κB/STAT6 activation.


Assuntos
Asma , Flavanonas , Glucosídeos , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Ovalbumina/efeitos adversos , Ovalbumina/metabolismo , Interleucina-13 , Interleucina-5/metabolismo , Interleucina-5/farmacologia , Interleucina-5/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/genética , Pulmão/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Citocinas/genética , Citocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/farmacologia
5.
Eur Respir J ; 63(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453256

RESUMO

Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.


Assuntos
Asma , Humanos , Epitélio/patologia , Inflamação/metabolismo , Predisposição Genética para Doença , Muco/metabolismo
6.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542124

RESUMO

Inflammation and mucus production are prevalent characteristics of chronic respiratory conditions, such as asthma and chronic chronic obstructive pulmonary disease (COPD). Biological co-factors, including bacteria, viruses, and fungi, may exacerbate these diseases by activating various pathways associated with airway diseases. An example is the fungus Pneumocystis, which is linked to severe COPD in human patients. Recent evidence has demonstrated that Pneumocystis significantly enhanced inflammation and mucus hypersecretion in a rat model of elastase-induced COPD. The present study specifically aims to investigate two additional aspects associated with the pathology induced by Pneumocystis infection: inflammation and collagen deposition around airways. To this end, the focus was to investigate the role of the IL-1ß pro-inflammatory pathway during Pneumocystis infection in COPD rats. Several airway pathology-related features, such as inflammation, mucus hypersecretion, and fibrosis, were evaluated using histological and molecular techniques. COPD animals infected with Pneumocystis exhibited elevated inflammation levels, including a synergistic increase in IL-1ß and Cox-2. Furthermore, protein levels of the IL-1ß-dependent transcription factor cAMP response element-binding (CREB) showed a synergistic elevation of their phosphorylated version in the lungs of COPD animals infected with Pneumocystis, while mucus levels were notably higher in the airways of COPD-infected animals. Interestingly, a CREB responsive element (CRE) was identified in the Muc5b promoter. The presence of CREB in the Muc5b promoter was synergistically increased in COPD animals infected with Pneumocystis compared to other experimental groups. Finally, an increment of deposited collagen was identified surrounding the airways of COPD animals infected with Pneumocystis compared with the other experimental animal groups and correlated with the increase of Tgfß1 mRNA levels. These findings emphasize the role of Pneumocystis as a potential biological co-factor in chronic respiratory diseases like COPD or asthma, warranting new perspectives in the treatment of chronic respiratory diseases.


Assuntos
Asma , Pneumocystis , Pneumonia por Pneumocystis , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Elastase Pancreática/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Asma/metabolismo , Muco/metabolismo , Inflamação/metabolismo , Colágeno/metabolismo
7.
ACS Nano ; 18(10): 7455-7472, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417159

RESUMO

The epithelial mucosa is a key biological barrier faced by gastrointestinal, intraoral, intranasal, ocular, and vaginal drug delivery. Ligand-modified nanoparticles demonstrate excellent ability on this process, but their efficacy is diminished by the formation of protein coronas (PCs) when they interact with biological matrices. PCs are broadly implicated in affecting the fate of NPs in vivo and in vitro, yet few studies have investigated PCs formed during interactions of NPs with the epithelial mucosa, especially mucus. In this study, we constructed transferrin modified NPs (Tf-NPs) as a model and explored the mechanisms and effects that epithelial mucosa had on PCs formation and the subsequent impact on the transcellular transport of Tf-NPs. In mucus-secreting cells, Tf-NPs adsorbed more proteins from the mucus layers, which masked, displaced, and dampened the active targeting effects of Tf-NPs, thereby weakening endocytosis and transcellular transport efficiencies. In mucus-free cells, Tf-NPs adsorbed more proteins during intracellular trafficking, which enhanced transcytosis related functions. Inspired by soft coronas and artificial biomimetic membranes, we used mucin as an "active PC" to precoat Tf-NPs (M@Tf-NPs), which limited the negative impacts of "passive PCs" formed during interface with the epithelial mucosa and improved favorable routes of endocytosis. M@Tf-NPs adsorbed more proteins associated with endoplasmic reticulum-Golgi functions, prompting enhanced intracellular transport and exocytosis. In summary, mucus shielded against the absorption of Tf-NPs, but also could be employed as a spear to break through the epithelial mucosa barrier. These findings offer a theoretical foundation and design platform to enhance the efficiency of oral-administered nanomedicines.


Assuntos
Nanopartículas , Coroa de Proteína , Feminino , Humanos , Enterócitos/metabolismo , Coroa de Proteína/metabolismo , Transcitose , Muco/metabolismo , Transferrinas/metabolismo , Transferrinas/farmacologia , Transferrina/metabolismo
8.
Biomed Pharmacother ; 173: 116319, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422654

RESUMO

BACKGROUND: Effects of Dictamnus dasycarpus Turcz. on allergic asthma and their underlying mechanisms remain unclarified. Thus, we investigated the effects of D. dasycarpus Turcz. water extract (DDW) on mucus hypersecretion in mice with ovalbumin (OVA)-induced asthma and human bronchial epithelial cells. METHODS: BALB/c mice were used to establish an OVA-induced allergic asthma model. Mice were grouped into the OVA sensitization/challenge, 100 and 300 mg/kg DDW treatment, and dexamethasone groups. In mice, cell counts in bronchoalveolar lavage fluid (BALF), serum and BALF analyses, and histopathological lung tissue analyses were performed. Furthermore, we confirmed the basic mechanism in interleukin (IL)-4/IL-13-treated human bronchial epithelial cells through western blotting. RESULTS: In OVA-induced asthma mice, DDW treatment reduced inflammatory cell number and airway hyperresponsiveness and ameliorated histological changes (immune cell infiltration, mucus secretion, and collagen deposition) in lung tissues and serum total immunoglobulin E levels. DDW treatment lowered BALF IL-4, IL-5, and IL-13 levels; reduced levels of inflammatory mediators, such as thymus- and activation-regulated chemokine, macrophage-derived chemokine, and interferon gamma-induced protein; decreased mucin 5AC (MUC5AC) production; decreased signal transducer and activator of transcription (STAT) 6 and STAT3 expression; and restored forkhead box protein A2 (FOXA2) expression. In IL-4/IL-13-treated human bronchial epithelial cells, DDW treatment inhibited MUC5AC production, suppressed STAT6 and STAT3 expression (related to mucus hypersecretion), and increased FOXA2 expression. CONCLUSIONS: DDW treatment modulates MUC5AC expression and mucus hypersecretion by downregulating STAT6 and STAT3 expression and upregulating FOXA2 expression. These findings provide a novel approach to manage mucus hypersecretion in asthma using DDW.


Assuntos
Asma , Dictamnus , Fator 3-beta Nuclear de Hepatócito , Fator de Transcrição STAT3 , Camundongos , Humanos , Animais , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Ovalbumina , Modelos Animais de Doenças , Asma/induzido quimicamente , Asma/tratamento farmacológico , Pulmão , Inflamação/metabolismo , Muco/metabolismo , Líquido da Lavagem Broncoalveolar , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Fator de Transcrição STAT6/metabolismo
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339210

RESUMO

The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.


Assuntos
Asma , Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Humanos , Muco/metabolismo , Transtornos Respiratórios/metabolismo , Sistema Respiratório/metabolismo , Fibrose Cística/metabolismo , Asma/metabolismo , Escarro/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucinas/metabolismo
10.
Biomacromolecules ; 25(3): 1578-1591, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38333985

RESUMO

Muco-obstructive diseases change airway mucus properties, impairing mucociliary transport and increasing the likelihood of infections. To investigate the sorption properties and nanostructures of mucus in health and disease, we investigated mucus samples from patients and cell cultures (cc) from healthy, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) airways. Atomic force microscopy (AFM) revealed mucin monomers with typical barbell structures, where the globule to spacer volume ratio was the highest for CF mucin. Accordingly, synchrotron small-angle X-ray scattering (SAXS) revealed more pronounced scattering from CF mucin globules and suggested shorter carbohydrate side chains in CF mucin and longer side chains in COPD mucin. Quartz crystal microbalance with dissipation (QCM-D) analysis presented water sorption isotherms of the three types of human airway mucus, where, at high relative humidity, COPD mucus had the highest water content compared to cc-CF and healthy airway mucus (HAM). The higher hydration of the COPD mucus is consistent with the observation of longer side chains of the COPD mucins. At low humidity, no dehydration-induced glass transition was observed in healthy and diseased mucus, suggesting mucus remained in a rubbery state. However, in dialyzed cc-HAM, a sorption-desorption hysteresis (typically observed in the glassy state) appeared, suggesting that small molecules present in mucus suppress the glass transition.


Assuntos
Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Água/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Muco/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucinas/química
11.
Cell Host Microbe ; 32(2): 149-150, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359795

RESUMO

Human milk oligosaccharide (HMO) consumption by the infant microbiota is positively associated with immune health. In this issue of Cell Host & Microbe, Buzun et al. report a mechanism for HMO digestion by Bacteroides fragilis and demonstrate how the same pathway works on intestinal mucus to establish long-term gut residency.


Assuntos
Microbiota , Leite Humano , Lactente , Humanos , Bacteroides fragilis , Oligossacarídeos/metabolismo , Muco/metabolismo
12.
Food Funct ; 15(3): 1223-1236, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38226896

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that lead to the disruption of the colonic mucus barrier. Quinoa has a well-balanced profile of essential amino acids and exhibits excellent anti-inflammatory effects. We recently explored the beneficial effects and relevant mechanisms of a novel quinoa peptide TPGAFF on impaired mucus barriers in mice with chemically induced colitis. Our findings demonstrated that TPGAFF, administered in low and high doses for 28 days, effectively attenuated the pathological phenotype and reduced intestinal permeability in colitis mice. TPGAFF demonstrated its protective abilities by restoring the impaired mucus barrier, inhibiting the activation of inflammatory signaling and reducing inflammatory cytokine levels. Moreover, TPGAFF positively influenced the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, TPGAFF inhibited the activation of TRPV1 nociceptor and decreased the levels of neuropeptides. Conclusively, our results indicated that oral administration of TPGAFF may be an optional approach for the treatment of mucus barrier damage.


Assuntos
Chenopodium quinoa , Colite , Microbioma Gastrointestinal , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Chenopodium quinoa/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Muco/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , Canais de Cátion TRPV
13.
J Biol Chem ; 300(3): 105675, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272223

RESUMO

The O-glycoprotein Mucin-2 (MUC2) forms the protective colon mucus layer. While animal models have demonstrated the importance of Muc2, few studies have explored human MUC2 in similar depth. Recent studies have revealed that secreted MUC2 is bound to human feces. We hypothesized human fecal MUC2 (HF-MUC2) was accessible for purification and downstream structural and functional characterization. We tested this via histologic and quantitative imaging on human fecal sections; extraction from feces for proteomic and O-glycomic characterization; and functional studies via growth and metabolic assays in vitro. Quantitative imaging of solid fecal sections showed a continuous mucus layer of varying thickness along human fecal sections with barrier functions intact. Lectin profiling showed HF-MUC2 bound several lectins but was weak to absent for Ulex europaeus 1 (α1,2 fucose-binding) and Sambucus nigra agglutinin (α2,6 sialic acid-binding), and did not have obvious b1/b2 barrier layers. HF-MUC2 separated by electrophoresis showed high molecular weight glycoprotein bands (∼1-2 MDa). Proteomics and Western analysis confirmed the enrichment of MUC2 and potential MUC2-associated proteins in HF-MUC2 extracts. MUC2 O-glycomics revealed diverse fucosylation, moderate sialylation, and little sulfation versus porcine colonic MUC2 and murine fecal Muc2. O-glycans were functional and supported the growth of Bacteroides thetaiotaomicron (B. theta) and short-chain fatty acid (SCFA) production in vitro. MUC2 could be similarly analyzed from inflammatory bowel disease stools, which displayed an altered glycomic profile and differential growth and SCFA production by B. theta versus healthy samples. These studies describe a new non-invasive platform for human MUC2 characterization in health and disease.


Assuntos
Colo , Fezes , Proteômica , Animais , Humanos , Camundongos , Colo/metabolismo , Glicoproteínas/metabolismo , Mucosa Intestinal/metabolismo , Mucina-2/genética , Mucina-2/metabolismo , Muco/metabolismo , Suínos , Masculino , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal
14.
ACS Appl Mater Interfaces ; 16(6): 7686-7699, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289234

RESUMO

The pathogenesis of ulcerative colitis (UC) is associated with the shedding of the gut mucus. Herein, inspired by the biological functions of mucus, growth factors-loaded in situ hydrogel (PHE-EK) was designed for UC treatment by integrating dihydrocaffeic acid-modified poloxamer as a thermosensitive material with hyaluronic acid (colitis-specific adhesive), epigallocatechin-3-gallate (antibacterial agent), and bioactive factors (KPV tripeptide and epidermal growth factor). PHE-EK presented good thermosensitive properties, as a flowable liquid at room temperature and gelled within 10 s when exposed to body temperature. PHE-EK hydrogel presented good mechanical strength with a strain of 77.8%. Moreover, PHE-EK hydrogel displayed antibacterial activity against Escherichia coli. Importantly, in vitro and in vivo adhesive tests showed that the PHE-EK hydrogel could specifically adhere to the inflamed colon via electrostatic interaction. When PHE-EK as a biomimetic mucus was rectally administrated to colitis rats, it effectively hindered the body weight loss, reduced the disease activity index and improved the colonic shorting. Moreover, the expression of pro-inflammatory cytokines (e.g., IL-1ß, IL-6, and TNF-α) at the laminae propria or epitheliums of the colon for colitis rats was substantially inhibited by PHE-EK. Besides, the colonic epitheliums were well rearranged, and the tight junction proteins (Zonula-1 and Claudin-5) between them were greatly upregulated after PHE-EK treatment. Collectively, PHE-EK might be a promising therapy for UC.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Hidrogéis/farmacologia , Biomimética , Temperatura , Colite/metabolismo , Muco/metabolismo , Modelos Animais de Doenças
15.
Microbiol Res ; 281: 127599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219635

RESUMO

The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.


Assuntos
Formigas , Mucosa Intestinal , Animais , Mucosa Intestinal/metabolismo , Muco/metabolismo , Mucina-2/metabolismo , Mucinas/metabolismo , Colo/metabolismo , Colo/microbiologia , Polissacarídeos/metabolismo , Formigas/metabolismo
16.
Eur J Immunol ; 54(1): e2350558, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37855177

RESUMO

Airway epithelial cells contribute to a variety of lung diseases including allergic asthma, where IL-4 and IL-13 promote activation of the transcription factor STAT6. This leads to goblet cell hyperplasia and the secretion of effector molecules by epithelial cells. However, the specific effect of activated STAT6 in lung epithelial cells is only partially understood. Here, we created a mouse strain to selectively investigate the role of constitutively active STAT6 in Club cells, a subpopulation of airway epithelial cells. CCSP-Cre_STAT6vt mice and bronchiolar organoids derived from these show an enhanced expression of the chitinase-like protein Chil4 (Ym2) and resistin-like molecules (Relm-α, -ß, -γ). In addition, goblet cells of these mice spontaneously secrete mucus into the bronchi. However, the activated epithelium resulted neither in impaired lung function nor conferred a protective effect against the migrating helminth Nippostrongylus brasiliensis. Moreover, CCSP-Cre_STAT6vt mice showed similar allergic airway inflammation induced by live conidia of the fungus Aspergillus fumigatus and similar recovery after influenza A virus infection compared to control mice. Together these results highlight that STAT6 signaling in Club cells induces the secretion of Relm proteins and mucus without impairing lung function, but this is not sufficient to confer protection against helminth or viral infections.


Assuntos
Asma , Resistina , Animais , Camundongos , Asma/metabolismo , Células Epiteliais/metabolismo , Pulmão , Muco/metabolismo , Resistina/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo
17.
Biomater Sci ; 12(3): 634-649, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38047368

RESUMO

Exosomes have emerged as a promising tool for the delivery of drugs and genetic materials, owing to their biocompatibility and non-immunogenic nature. However, challenges persist in achieving successful oral delivery due to their susceptibility to degradation in the harsh gastrointestinal (GI) environment and impeded transport across the mucus-epithelium barrier. To overcome these challenges, we have developed high-purity bovine milk exosomes (mExo) as a scalable and efficient oral drug delivery system, which can be customized by incorporating hydrophilic and zwitterionic motifs on their surface. In our study, we observed significantly improved transport rates by 2.5-4.5-fold in native porcine intestinal mucus after the introduction of hydrophilic and zwitterionic surface modifications, as demonstrated by transwell setup and fluorescence recovery after photobleaching (FRAP) analysis. Remarkably, mExo functionalized by a block peptide (BP), consisting of cationic and anionic amino acids arranged in blocks at the two ends, demonstrated superior tolerability in the acidic gastric environment (with a protein recovery rate of 84.8 ± 7.7%) and exhibited a 2.5-fold increase in uptake by intestinal epithelial cells. Furthermore, both mExo and mExo-BP demonstrated successful intracellular delivery of functional siRNA, resulting in up to 65% suppression of the target green fluorescence protein (GFP) gene expression at a low dose of siRNA (5 pmol) without causing significant toxicity. These findings highlight the immense potential of modifying mExo with hydrophilic and zwitterionic motifs for effective oral delivery of siRNA therapies.


Assuntos
Exossomos , Nanopartículas , Animais , Suínos , Leite , Exossomos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Permeabilidade , Muco/metabolismo , Administração Oral , Portadores de Fármacos/química , Nanopartículas/química
18.
Microbiol Spectr ; 12(1): e0206523, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095466

RESUMO

IMPORTANCE: The intestinal mucus barrier, located at the interface of the intestinal epithelium and the microbiota, is the first line of defense against pathogenic microorganisms and environmental antigens. Dietary polysaccharides, which act as microbiota-accessible fiber, play a key role in the regulation of intestinal microbial communities. However, the mechanism via which dietary fiber affects the intestinal mucus barrier through targeted regulation of the gut microbiota is not clear. This study provides fundamental evidence for the benefits of dietary fiber supplementation in broiler chickens through improvement in the intestinal mucus barrier by targeted regulation of the gut ecosystem. Our findings suggest that the microbiota-accessible fiber-gut microbiota-short-chain fatty acid/bile acid axis plays a key role in regulating intestinal function.


Assuntos
Galinhas , Microbiota , Animais , Fibras na Dieta , Ácidos Graxos Voláteis/metabolismo , Muco/metabolismo , Ácidos e Sais Biliares
19.
J Exp Zool A Ecol Integr Physiol ; 341(2): 182-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155516

RESUMO

The snail mucus provides several functions and is increasingly being exploited for medicinal and cosmetic purposes. This study aimed to determine the chemical profile of two snail mucus extracts: the garden snail (Helix aspersa) and the desert snail (Eremina desertorum). In addition, it elucidates the antityrosinase, antioxidant, and anticancer activities against the human cancer cell line epithelioid carcinoma (Hela). The mucus was extracted from the pedal glands of garden snails (H. aspersa) and desert snails (E. desertorum). 2,2-Diphenyl-1-picrylhydrazyl assay and the content of catalase, glutathione-S-transferase, superoxide dismutase, and reduced glutathione were utilized to assess the antioxidative screening activity of the mucus extracts. Besides a tyrosinase inhibitor assay, anticancer activity on cervical cancer cells (Hela) was studied. Additionally, the two mucus samples' total protein, total lipid, fatty acid, and amino acid profiles were compared. The mucus from both snails exhibited antioxidant activity. E. desertorum is more effective in inhibiting tyrosinase activity and has better scavenging activity than H. aspersa mucus extract. Both extracts revealed inhibitory activity against Hela cells, with insignificant differences. Moreover, the results indicated higher protein, lipids, and fatty acids mucus content of E. desertorum extract than those of H. aspersa mucus extract. Both snail slimes' obtained different biological activities, and amino acid contents could be related to their specific functions and beneficial for medical applications, especially antihyperpigmentation.


Assuntos
Antioxidantes , Monofenol Mono-Oxigenase , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células HeLa , Egito , Monofenol Mono-Oxigenase/metabolismo , Muco/metabolismo , Aminoácidos/metabolismo
20.
Adv Colloid Interface Sci ; 322: 103049, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039907

RESUMO

Mucus is a viscoelastic material with non-linear rheological properties such as a yield stress of the order of a few hundreds of millipascals to a few tens of pascals, due to a complex network of mucins in water along with non-mucin proteins, DNA and cell debris. In this review, we discuss the origin of the yield stress in human mucus, the changes in the rheology of mucus with the occurrence of diseases, and possible clinical applications in disease detection as well as cure. We delve into the domain of mucus rheology, examining both macro- and microrheology. Macrorheology involves investigations conducted at larger length scales (∼ a few hundreds of µm or higher) using traditional rheometers, which probe properties on a bulk scale. It is significant in elucidating various mucosal functions within the human body. This includes rejecting unwanted irritants out of lungs through mucociliary and cough clearance, protecting the stomach wall from the acidic environment as well as biological entities, safeguarding cervical canal from infections and providing a swimming medium for sperms. Additionally, we explore microrheology, which encompasses studies performed at length scales ranging from a few tens of nm to a µm. These microscale studies find various applications, including the context of drug delivery. Finally, we employ scaling analysis to elucidate a few examples in lung, cervical, and gastric mucus, including settling of irritants in lung mucus, yielding of lung mucus in cough clearance and cilial beating, spreading of exogenous surfactants over yielding mucus, swimming of Helicobacter pylori through gastric mucus, and lining of protective mucus in the stomach. The scaling analyses employed on the applications mentioned above provide us with a deeper understanding of the link between the rheology and the physiology of mucus.


Assuntos
Tosse , Irritantes , Humanos , Tosse/metabolismo , Irritantes/metabolismo , Muco/metabolismo , Mucinas/metabolismo , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...